💡
原文中文,约3000字,阅读约需7分钟。
📝
内容提要
证据权重法(WofE)在成矿预测中存在理论缺陷,特别是证据层之间的条件独立性假设不成立,导致系统性偏倚和虚假精确感。为解决这些问题,研究者提出了模糊证据权重法、序列证据权重法和混合模型等改进方法,以提高预测的准确性和适用性。然而,WofE仍面临对已知矿床样本依赖等挑战。
🎯
关键要点
- 证据权重法(WofE)在成矿预测中存在理论缺陷,特别是证据层之间的条件独立性假设不成立。
- 条件独立性假设的违背会导致系统性偏倚和虚假精确感。
- WofE方法对已知矿床样本依赖性强,影响模型的稳定性和预测能力。
- 传统WofE方法的二值化处理会导致信息损失,忽略细节变化。
- WofE模型在不确定性量化方面能力不足,难以进行风险评估。
- 模糊证据权重法通过隶属度函数处理地质边界的模糊性,减少信息损失。
- 序列证据权重法通过迭代学习和误差修正提高预测精度,克服条件独立性假设。
- 混合模型结合多种方法以提高成矿预测的准确性和适用性,仍面临根本性问题。
➡️