基于动态领域适应的深度学习网络用于基于脑电信号的动作意象分类

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

该文介绍了一种基于动态领域自适应的深度学习网络(DADL-Net),通过3D卷积模块将脑电数据映射到三维几何空间,并学习其时空特征,利用空间通道注意机制加强特征,最终通过卷积模块进一步学习特征的时空信息。该方法在BCI竞赛IV 2a和OpenBMI数据集上验证,准确率分别达到70.42%和73.91%。

原文中文,约300字,阅读约需1分钟。
阅读原文