本研究探讨了交叉熵损失在自然语言推理中的不足,通过替换近义词生成对比集,评估模型的理解能力。ELECTRA-small模型在常规数据集上的准确率为89.9%,但在对比集上降至72.5%。通过增强训练数据集,模型准确率提升至85.5%。研究强调多样化语言表达的重要性,以推动自然语言推理模型的发展。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: