基于内部表示的在线连续域适应语义图像分割
原文中文,约300字,阅读约需1分钟。发表于: 。本研究提出一种在线无监督域自适应算法,通过在共享嵌入空间中最小化源潜在特征与目标特征之间的分布距离,促进两个领域之间的共享领域无关潜在特征空间,从而改善图像的语义分割模型在未注释领域上的泛化性能。为了在自适应过程中减轻对源样本访问的需求,我们通过一个合适的替代分布(如高斯混合模型)来近似源潜在特征分布。我们在已建立的语义分割数据集上评估了我们的方法,并证明它在未注释领域的泛化性能上与最先进的...
本研究提出了一种在线无监督域自适应算法,通过最小化源潜在特征与目标特征之间的分布距离,改善图像的语义分割模型在未注释领域上的泛化性能。该方法通过近似源潜在特征分布减少对源样本的需求,实验证明其在未注释领域的泛化性能上具有竞争优势。