了解您的参考模型以实现良好对齐
本文研究了大规模语言模型对齐的两种主要方法:强化学习与人类反馈(RLHF)以及基于对比学习的直接偏好优化(DPO)。通过分析稳定性和鲁棒性,提出了一种新方法MPO(混合偏好优化),减轻了两种方法的缺点。实验在两个公开的对齐数据集上展示了MPO的有效性。
原文约300字/词,阅读约需1分钟。
本文研究了大规模语言模型对齐的两种主要方法:强化学习与人类反馈(RLHF)以及基于对比学习的直接偏好优化(DPO)。通过分析稳定性和鲁棒性,提出了一种新方法MPO(混合偏好优化),减轻了两种方法的缺点。实验在两个公开的对齐数据集上展示了MPO的有效性。