NOLA:网络作为低秩随机基组合的线性组合

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 -

Delta-LoRA是一种新颖的参数高效的方法,用于微调大型语言模型。它通过更新低秩矩阵A和B,并利用两个低秩矩阵的乘积的增量将学习传播到预训练权重W,从而有效地解决了低秩矩阵的增量更新对于学习适用于下游任务的表示的不足。Delta-LoRA与LoRA具有相当的内存需求和计算成本,大量实验表明Delta-LoRA明显优于现有的低秩适应方法。

原文中文,约400字,阅读约需1分钟。
阅读原文