物理知情模型与混合规划用于高效的 Dyna 风格增强学习
原文中文,约300字,阅读约需1分钟。发表于: 。应用强化学习(RL)于现实世界的应用需解决渐进性能、样本效率和推理时间之间的平衡问题。本文利用对系统动力学的部分物理知识,演示了如何应对这种三重挑战。我们的方法包括学习一个基于物理知识的模型,以提高样本效率,并通过该模型生成虚拟轨迹,从中学习无模型策略和 Q 函数。此外,我们提出了一种混合规划策略,将学习到的策略、Q...
本文介绍了一种应用强化学习(RL)解决现实世界问题的方法,通过学习基于物理知识的模型提高样本效率,并使用虚拟轨迹进行学习。同时,提出了混合规划策略,将学习到的策略、Q 函数和模型结合起来,提高规划的时间效率。实验证明该方法在样本效率、时间效率和性能方面优于现有方法。