RAG 与 Fine-tuning:管道、权衡及农业案例研究
原文中文,约500字,阅读约需2分钟。发表于: 。在本文中,我们提出了一种用于 fine-tuning 和 RAG 的流程,并介绍了它们在多种流行的 LLMs 中的权衡。我们对农业数据集进行了深入研究,结果显示我们的数据集生成流程在捕捉特定地理知识方面的有效性以及 RAG 和 fine-tuning 的定量和定性优势。整体而言,结果表明通过使用 LLMs 构建的系统可以适应和整合特定行业关键维度上的知识,为其他工业领域进一步应用 LLMs 铺平了道路。
本研究提出了一种利用大型语言模型(LLM)应用架构实现生成式人工智能服务的方法,解决了信息匮乏的挑战,并通过利用 LLM 功能提出了具体的解决方案。研究突出了所提出方法的有效性和适用性。