图神经网络(GNNs)在半监督节点分类中表现出显著性能。然而,大多数现有的GNN都遵循同质性假设,这在实际应用中被证明是脆弱的。AMUD是一种新的数据工程方法,能够在同质性和异质性下提供强大的性能。实证研究表明AMUD指导了高效的图学习。ADPA在14个基准数据集上表现出色,优于基准线3.96%。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: