利用 SCADA 数据和连续学习进行风力发电预测的偏差校正
原文中文,约200字,阅读约需1分钟。发表于: 。通过评估和比较四种基于机器学习的风力发电预测模型,我们发现卷积神经网络在纠正和改进从数值天气预报模型中提取的 48 小时风力预测方面取得了最好的结果,平均归一化均方根误差降至 22%,同时减少了均方根误差,并且未来研究应当探究模型流程的变化以提高预测性能。此外,我们引入了连续学习策略,该策略在新数据可用时取得了最高的预测性能提升。
通过改变CNN-LSTM和自回归模型的输入数据形状,提出了一种新的特征工程方法,以提高对噪声的处理能力。结果显示,该方法能够以83%的准确率预测长达24个时间步的未见数据,并在短期、中期和长期预测方面表现出较高的准确性。