监测病变增长的纵向脊柱 CT 图像配准
原文中文,约500字,阅读约需2分钟。发表于: 。实现自动且鲁棒的纵向脊柱图像配准对于评估疾病进展和手术结果至关重要,本文提出了一种新颖的方法,通过深度学习模型自动定位、标记和生成三维表面,然后使用高斯混合模型表面配准实现纵向脊柱 CT 图像对齐并准确评估病变进展,实验证明该方法在 37 个椎体、5 名患者的基线和 3、6、12 个月后的随访图像上显示出了平均 Hausdorff 距离为 0.65 毫米和 Dice 分数为 0.92 的准确配准。
本文介绍了一种用于评估新辅助化疗后乳腺DCE-MRI的长期变形注册方法,通过无监督关键点检测和选择性体积保持的有条件金字塔式注册网络,精确量化肿瘤变化,具有更好的注册性能和肿瘤体积保持,对病理完全缓解预测准确。该方法有望避免不必要的手术,对随访肿瘤分割和响应预测有重要价值。