SD-PINN: 基于深度学习的空间相关偏微分方程恢复

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本文介绍了使用深度卷积神经网络和球谐分析的最新近似结果,对物理信息的卷积神经网络(PICNN)在球面上求解偏微分方程的数值性能进行了严格的分析,并证明了其与 Sobolev 范数的逼近误差的上界。同时,结合定位复杂度分析,建立了 PICNN 的快速收敛速率。作者还探讨了解决高维 PDEs 时出现的维度诅咒的潜在策略。

原文中文,约300字,阅读约需1分钟。
阅读原文