💡 原文英文,约900词,阅读约需4分钟。
📝

内容提要

特征工程是数据科学和机器学习中的关键环节,旨在从原始数据中构建有意义的特征。本文介绍了7个不太知名的Python库,包括NVTabular、FeatureTools、Dask、Polars、Feast、tsfresh和River,以提高特征工程的效率和规模,适用于大规模数据集和复杂转换的自动化。

🎯

关键要点

  • 特征工程是数据科学和机器学习中的关键环节,旨在从原始数据中构建有意义的特征。
  • 本文介绍了7个不太知名的Python库,以提高特征工程的效率和规模。
  • NVTabular是NVIDIA-Merlin开发的库,专注于对表格数据进行预处理和特征工程,支持GPU加速。
  • FeatureTools通过深度特征合成(DFS)自动化特征工程,适用于关系型和时间序列数据。
  • Dask通过集群计算加速传统Pandas和scikit-learn的特征转换,适合大规模数据集。
  • Polars是基于Rust的高性能数据框库,使用惰性计算驱动高效的特征工程。
  • Feast是一个开源特征存储库,确保训练和推理阶段的一致性,适用于大规模AI应用。
  • tsfresh专注于大规模时间序列数据的特征提取,能够计算数百个有意义的特征。
  • River库旨在简化在线机器学习工作流,支持在线特征转换和学习技术,处理数据特征的变化。
➡️

继续阅读