可解释的三维多模态残差卷积神经网络用于轻度创伤性脑损伤诊断

原文中文,约500字,阅读约需2分钟。发表于:

通过在 Mild Traumatic Brain Injury (mTBI) 诊断模型中增加解释性的 3D 多模态残差卷积神经网络(MRCNN)和屏蔽敏感图(OSM),我们展示了该模型在 mTBI 诊断中的出色表现,平均准确度为 82.4%,敏感度为 82.6%,特异度为 81.6%,并经过五折交叉验证过程验证。与基于 CT 的残差卷积神经网络(RCNN)模型相比,MRCNN...

该论文提出了使用多个模型来高效检测脑肿瘤,并创建自动分类脑肿瘤的系统。在平衡数据集上评估了所提出架构的性能,并发现细调的 InceptionV3 模型的准确率为 99.33%。此外,还提出了一种成本敏感的神经网络方法,以处理不平衡数据集,在实验中取得了比传统模型准确率高近 4% 的成果。成本敏感的 InceptionV3 和 CNN 在不平衡数据集上分别显示出 92.31% 的准确率和 1.00 的召回率。该论文提供了数据集,并公开了实现。

相关推荐 去reddit讨论
  1. ACME的使用经验
    ACME是一个自动管理证书的程序,有多种实现,本文介绍了acme.sh的使用。安装、申请、安装证书、续签证书等步骤都有详细说明。在Windows环境下使用...
  2. 新 Mac 支持雷雳 5 了,但你真的需要它吗?
    USB-C是一种接口形状,可以与不同协议、速率和充电功率混搭。USB-C解决了线缆插入问题,但工作正常与否取决于支持的协议。USB-C线缆的兼容性还取决于...
  3. Meta 宣布推出 AI 驱动的视频生成器 Movie Gen
    Meta推出Movie Gen AI视频生成器,可通过文本生成高清视频并添加音效,还能编辑现有视频和图像。由于成本高和生成时间长,暂不公开发布。工具引发版...
  4. 模块化:在Python🐍中使用Mojo🔥
    本文介绍了在Mojo中使用Python模块和包的方法,包括查找和加载模块和包、使用venv创建虚拟环境和使用Conda安装libpython。文章提供了示...
  5. 模块化:Mojo🔥 - 它终于来了!
    自从5月2日推出Mojo编程语言以来,已有超过120,000名开发者注册使用Mojo Playground,19,000名开发者在Discord和GitH...
  6. 模块化:Python程序员轻松入门Mojo🔥
    本文介绍了Mojo编程语言,从Python程序员的角度出发,通过一个简单的例子展示了Mojo的语法和性能优势。文章指出Mojo与Python语法相似,但在...
  7. Modular:发布 MAX 开发者版预览
    Modular推出了Modular Accelerated Xecution (MAX)平台,旨在简化在不同硬件平台上部署AI模型。MAX包括先进的AI编...
  8. 模块化:Mojo🔥如何实现比Python快35,000倍的速度提升——第一部分
    本文介绍了Mojo编程语言在Mandelbrot集合问题上的性能优化,通过类型注释、严格模式和简化计算等方法,实现了46倍至89倍的速度提升。与NumPy...
  9. Modular:我们筹集了1亿美元以改善全球开发者的AI基础设施
    Modular宣布获得1亿美元新融资,加速实现全球开发者AI基础设施愿景。他们的下一代AI开发者平台改善了AI的可编程性、可用性、可扩展性、计算效率和硬件...
  10. 模块化:Mojo🔥 如何实现比 Python 快 35,000 倍的加速 – 第二部分
    在本博客文章中,我们将继续优化Mandelbrot集合问题,并将速度提高到Python的26,000倍。我们将分享使用的技术,并讨论Mojo的优势。第三部...