深度学习中产生的受控粒子系统的收敛性分析:从有限样本到无限样本大小
该研究探讨了神经随机微分方程的极限行为和最优控制问题的汉密尔顿-雅可比-贝尔曼方程。通过分析反向随机黎卡蒂方程,得出了正则估计结果,并展示了目标函数极小值和神经随机微分方程的最优参数在样本大小趋于无穷时的收敛性。
原文中文,约300字,阅读约需1分钟。
该研究探讨了神经随机微分方程的极限行为和最优控制问题的汉密尔顿-雅可比-贝尔曼方程。通过分析反向随机黎卡蒂方程,得出了正则估计结果,并展示了目标函数极小值和神经随机微分方程的最优参数在样本大小趋于无穷时的收敛性。