面向几何感知的神经多目标组合优化 Pareto 集学习
原文中文,约300字,阅读约需1分钟。发表于: 。通过基于超体积期望最大化的 Pareto 注意模型以及超体积残差更新策略,结合新颖的推理方法和局部子集选择方法,设计了一种名为 GAPL 的几何感知 Pareto 集学习算法,用于解决多目标组合优化问题,提高问题的分解能力和多样性增强。通过三个经典的多目标组合优化问题的实验结果表明,GAPL 算法在分解和多样性增强方面优于现有的神经基准模型。
该研究提出了一种新的高效方法,用于生成局部连续的 Pareto 集和 Pareto fronts,并将其应用于现代机器学习问题中。通过基于样本的稀疏线性系统,扩展了多目标优化的理论结果,并实现了局部 Pareto 集的分析。通过在多任务分类和回归问题上的应用,证明了该算法在平衡权衡、找到更多不同权衡解以及处理百万级参数任务方面的能力。