通过问答探究语言模型对结构化语义理解和生成的能力
原文中文,约500字,阅读约需2分钟。发表于: 。最近大规模语言模型能力的进步引发了对其评估的新浪潮,这篇研究工作通过在自然语言和形式语言之间的相互转换来验证大规模语言模型理解和生成结构化逻辑形式的能力,实验证明现今最先进的大规模语言模型在理解逻辑形式方面整体上接近人类水平,但在生成正确逻辑形式方面仍有改进的空间,使用大规模语言模型生成更自然的语言训练数据以增强小型模型的效果更好,同时结果还表明模型对不同形式语言表现出显著的敏感性,总体而言...
该研究评估了大型语言模型在条件问答领域的能力和局限性。研究发现,微调的模型在某些情况下优于现有技术,但在抽取性问答方面落后于10个以上的点。研究强调了有效证据检索的重要性,并提出了改进训练任务和探索基于提示的技术以提高模型性能的未来工作的需求。