Ubiquant团队提出了一种新方法——熵最小化(EM),仅需一条无标签数据和10步训练,显著提升大语言模型(LLM)性能,超越传统强化学习(RL)方法。EM通过优化模型预测的熵,增强模型自信,适用于数据稀缺场景,降低后训练成本。研究表明,EM在数学推理任务中表现优异,具有广泛应用前景。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: