重新参数化技巧
原文英文,约1500词,阅读约需6分钟。发表于: 。How Distribution of a Random Variable Changes when the Variable is Transformed in a Deterministic Way
本文介绍了在神经网络编码潜在变量的有向概率图模型中,模型优化常遇到的问题:采样函数对生成潜在变量样本的参数不可微分。为了解决这个问题,提出了重新参数化技巧,通过将随机变量以确定性方式转换,使得采样函数对生成样本的参数可微分。文章详细介绍了有向概率图模型的定义、学习模型参数的方法、不可微分采样函数的问题以及重新参数化技巧的原理和应用。