一次梯度下降后两层网络中特征学习的渐近性

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

研究者通过连接非线性尖峰矩阵模型和高斯普遍性的最新进展,对两层神经网络在高维极限中的泛化误差进行了描述,并强调了数据适应对网络学习非线性函数的重要性。这是首次对两层神经网络在大学习率区间中的特征学习对泛化的影响进行严格描述。

原文中文,约300字,阅读约需1分钟。
阅读原文