数据集汇总丨初学YOLO必备数据集,覆盖动物/农作物/面部表情……

💡 原文中文,约2600字,阅读约需6分钟。
📝

内容提要

YOLO系列模型已更新至YOLOv13,性能和效率显著提升,尤其在复杂场景下。新机制HyperACE增强了检测能力,YOLOv13-N的mAP较前版本有所提高。HyperAI整理了适合新手的YOLO数据集,助力项目启动。

🎯

关键要点

  • YOLO系列模型已更新至YOLOv13,性能和效率显著提升。
  • YOLOv13引入HyperACE机制,提升复杂场景下的检测性能。
  • YOLOv13-N的mAP较YOLO11-N提高3.0%,较YOLO12-N提高1.5%。
  • HyperAI整理了适合新手的YOLO数据集,帮助项目启动。
  • Bird Species数据集用于鸟类物种识别与分类。
  • Vegetable Identification数据集用于蔬菜检测、分类和识别。
  • Crops Disease数据集用于农业作物病害检测与分类。
  • Facial Expressions数据集适用于情感识别和人机交互。
  • Road Hazards数据集用于检测道路上的危险情况。
  • Dog Breeds数据集用于狗品种分类模型的训练与评估。
  • 15个动物图像分类数据集适合图像分类任务。
  • UAVDT数据集用于无人机目标检测与跟踪任务。
  • HyperAI超神经致力于成为国内数据科学领域的基础设施,提供丰富的公共资源。
➡️

继续阅读