本文利用机器学习预测太阳耀斑,使用历史磁光图数据进行预测。通过卷积神经网络提取特征,并结合逻辑回归模型融合磁光图和耀斑历史的标量特征,生成24小时内M级或更强耀斑的校准概率预测。结果显示历史数据提高了预测准确性和可靠性,耀斑历史的预测能力大于从CNN中提取的特征,表明时间信息在耀斑预测模型中的重要性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: