通过扩散实现流形上的谱算法
原文中文,约400字,阅读约需1分钟。发表于: 。该研究论文探讨了在重现核希尔伯特空间 (RKHS) 中应用的谱算法,特别关注输入特征空间的内在结构,将输入数据视为嵌入高维欧几里得空间的低维流形,使用积分算子技术导出了关于广义范数的紧密收敛上界,证明估计器在强意义下收敛于目标函数及其导数,进一步建立了渐近优化性的最小化下界,验证了谱算法在高维逼近问题中的实际重要性。
该论文提出了一种基于扩散的谱聚类和降维算法的概率解释,利用规范化图拉普拉斯算子的特征向量。作者将这些特征向量视为具有反射边界条件下潜在 $2U (x)$ 力学势中福克 - 普朗克算子的离散近似的本征函数。最后,应用已知结果,对连续福克 - 普朗克算子的本征值和本征函数进行解析,从而为基于前几个特征向量的谱聚类和降维算法的成功提供了数学论证。