在检索增强生成中寻找最佳实践
原文中文,约300字,阅读约需1分钟。发表于: 。通过研究现有的 RAG 方法及其潜在组合,我们提出了几种既能兼顾性能又能提高效率的 RAG 策略,并证明多模态检索技术能显著增强对视觉输入的问答能力,并使用 “检索即生成” 策略加速多模态内容的生成。
Retrieval-Augmented Generation (RAG)是一种合并检索方法和深度学习技术的方法,旨在通过动态整合最新的外部信息解决大型语言模型(LLMs)的静态限制,并改进LLMs输出的准确性和可靠性。该研究将RAG分为四个类别,并提供了详细的视角和评估方法,同时介绍了其演进和领域的进展。该论文还提出了面临的挑战和未来的研究方向,旨在巩固现有的RAG研究,明确其技术基础,并突出其扩展LLMs的适应性和应用潜力。