在线凸优化下的在线次模最大化
原文中文,约400字,阅读约需1分钟。发表于: 。研究了在线环境下的通用拟阵约束下的单调子模最大化问题,证明了一大类子模函数在在线凸优化问题中的优化等价性,通过合适的舍入方案,实现了在组合优化中达到次线性后悔的 OCO 算法。同时,该规约也适用于多种不同版本的在线学习问题,包括动态后悔、游走和乐观学习等。
本文提出了针对连续次模函数类的在线优化过程,包括Frank-Wolfe算法的变体和在线随机梯度上升算法。证明了两种算法具有O(T的平方根)的遗憾界,并将结果推广到γ-弱次模函数。演示了算法的效率在几个问题实例上。