基于图像的城市交通预测的不确定性量化

原文中文,约500字,阅读约需2分钟。发表于:

深度学习模型对交通预测的强大预测性能使其得到广泛应用,但缺乏可解释性限制了其在实际智能交通系统中的部署。通过使用不确定性量化方法,我们调查了这些方法在跨多个城市和时间段的大规模基于图像的交通数据集上的应用,以获得对现有不确定性方法在交通预测中的实用性以及不确定性与城市交通动态之间的关系的全面认识。在在时间和时空转移任务上比较了两种认知不确定性方法和两种他稳不确定性方法后,我们发现可以恢复有意...

本研究探讨了深度学习模型在交通预测中的应用,通过不确定性量化方法提高其可解释性。研究发现这些方法在大规模基于图像的交通数据集上具有实用性,并能够恢复有意义的不确定性估计。此外,研究还展示了如何利用不确定性估计检测城市交通动态变化中的异常点。通过对莫斯科市的案例研究,发现这种方法能够捕捉到交通行为的时间和空间效应。本研究推动了不确定性意识在交通预测任务中的进一步发展,并突出了不确定性量化方法对于更好理解城市交通动态的价值。

相关推荐 去reddit讨论
  1. 模块化:Mojo🔥 如何实现比 Python 快 35,000 倍的加速 – 第二部分
    在本博客文章中,我们将继续优化Mandelbrot集合问题,并将速度提高到Python的26,000倍。我们将分享使用的技术,并讨论Mojo的优势。第三部...
  2. 模块化:Mojo🔥 - 它终于来了!
    自从5月2日推出Mojo编程语言以来,已有超过120,000名开发者注册使用Mojo Playground,19,000名开发者在Discord和GitH...
  3. 模块化:Mojo🔥如何实现比Python快35,000倍的速度提升——第一部分
    本文介绍了Mojo编程语言在Mandelbrot集合问题上的性能优化,通过类型注释、严格模式和简化计算等方法,实现了46倍至89倍的速度提升。与NumPy...
  4. 模块化:Python程序员轻松入门Mojo🔥
    本文介绍了Mojo编程语言,从Python程序员的角度出发,通过一个简单的例子展示了Mojo的语法和性能优势。文章指出Mojo与Python语法相似,但在...
  5. 模块化:在Python🐍中使用Mojo🔥
    本文介绍了在Mojo中使用Python模块和包的方法,包括查找和加载模块和包、使用venv创建虚拟环境和使用Conda安装libpython。文章提供了示...
  6. Modular:我们筹集了1亿美元以改善全球开发者的AI基础设施
    Modular宣布获得1亿美元新融资,加速实现全球开发者AI基础设施愿景。他们的下一代AI开发者平台改善了AI的可编程性、可用性、可扩展性、计算效率和硬件...
  7. Modular:发布 MAX 开发者版预览
    Modular推出了Modular Accelerated Xecution (MAX)平台,旨在简化在不同硬件平台上部署AI模型。MAX包括先进的AI编...
  8. ACME的使用经验
    ACME是一个自动管理证书的程序,有多种实现,本文介绍了acme.sh的使用。安装、申请、安装证书、续签证书等步骤都有详细说明。在Windows环境下使用...
  9. 新 Mac 支持雷雳 5 了,但你真的需要它吗?
    USB-C是一种接口形状,可以与不同协议、速率和充电功率混搭。USB-C解决了线缆插入问题,但工作正常与否取决于支持的协议。USB-C线缆的兼容性还取决于...
  10. Meta 宣布推出 AI 驱动的视频生成器 Movie Gen
    Meta推出Movie Gen AI视频生成器,可通过文本生成高清视频并添加音效,还能编辑现有视频和图像。由于成本高和生成时间长,暂不公开发布。工具引发版...