本文介绍了一种名为Syntactically controlled Paraphrase Generator(SynPG)的模型,该模型能够从未注释文本中学习语义与语法的分离,生成多样化的释义。实验结果表明,SynPG在语法控制和释义质量上优于无监督基线,经过训练后,其性能可与有监督模型相媲美,适用于数据增强,提高NLP模型的鲁棒性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: