本研究提出了一种新颖的方案,通过构建神经网络参数的低维子空间来解决贝叶斯深度学习中的计算复杂性限制。该方案通过Monte Carlo采样方法或变分推断实现了可行和可扩展的贝叶斯推断,为回归任务提供了可靠的预测和不确定性估计。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: