通过信息增强和自适应特征融合的方式,在 DETR 中进行小物体检测
原文中文,约500字,阅读约需2分钟。发表于: 。本研究针对小物体检测中 RT-DETR 模型的准确性不足提出了两个关键改进:首先,引入细粒度路径增强方法以提供更多详细信息来精确定位小物体;其次,采用自适应特征融合算法来有效整合不同尺度的特征信息,从而提高模型对不同尺度目标的检测准确率。
本论文介绍了一种改进的DETR检测器,使用简洁设计、单尺度特征图和全局交叉注意力计算,没有特定的局部约束。通过添加盒子到像素相对位置偏差项和基于遮蔽图像模型的骨干预训练,改进的DETR检测器在原始DETR检测器的基础上取得了显著的改进。