非可微性对神经网络训练的影响有三个方面:连续可微的网络收敛速度更快,深度学习求解器对$L_{1}$正则化问题的解是错误的,凸性非光滑的Lipschitz连续函数显示不稳定的收敛。研究结果表明,在训练过程中考虑神经网络的非线性是关键。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: