KDD 2023 | 美团技术团队精选论文解读
原文中文,约5100字,阅读约需13分钟。发表于: 。本文精选了美团技术团队被KDD 2023收录的7篇论文进行解读,论文覆盖了Feed流推荐、多模态数据、实例分割、用户意图预测等多个方向。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
ACM SIGKDD是一个重要的国际会议,旨在促进数据挖掘和知识发现的应用和理论研究。其中,论文提出了PIER重新排序框架,用于改善Feed流推荐质量;提出了CCTL协同跨域迁移学习框架,用于改善不同业务领域的CTR预测建模;提出了DPVP双重时段变化偏好建模模型,用于解决外卖推荐中的双重交互感知偏好问题;提出了在线奖励分配框架,用于解决奖励分配中的挑战;提出了C-AOI基于实例分割的AOI轮廓自动生成框架,用于提高AOI边界生成质量;介绍了NEON用户意图预测系统,用于准确理解用户需求;介绍了美团在KDD Cup 2023比赛中的解决方案,包括召回和排序两个阶段。美团科研合作致力于搭建合作平台,推动产学研合作和成果转化。