基于双曲空间的开放世界感知中的分类学感知连续语义分割
本文提出了基于分类树结构的混合分布增量类别分割(TOPICS)方法,通过学习特征嵌入和建立隐式类别关系约束,实现了在开放世界场景中的适用性。在自动驾驶场景下进行了大量评估,证明其达到了最先进的性能水平。
原文中文,约400字,阅读约需1分钟。
本文提出了基于分类树结构的混合分布增量类别分割(TOPICS)方法,通过学习特征嵌入和建立隐式类别关系约束,实现了在开放世界场景中的适用性。在自动驾驶场景下进行了大量评估,证明其达到了最先进的性能水平。