Mask-RT-DETR,实例分割新SOTA,首发PaddleX
💡
原文中文,约4300字,阅读约需11分钟。
📝
内容提要
实例分割是计算机视觉中的重要任务,能够提供丰富详细的信息,广泛应用于多个领域。基于百度飞桨发布的RT-DETR模型,Mask-RT-DETR适配实例分割任务,具有优势。Mask-RT-DETR在总体结构上与RT-DETR基本一致,但在实现细节上进行了改进。通过改进,Mask-RT-DETR在实例分割任务中取得了SOTA精度。Mask-RT-DETR采用了PP-HGNetV2作为骨干网络,并引入了MaskFeatFPN模块和IoU-aware Query Selection技术。Mask-RT-DETR还增加了分割头MaskDINOHead。Mask-RT-DETR的benchmark指标达到了SOTA精度。PaddleX提供了多种开发和部署方式,包括云端形式和本地开源版。
🎯
关键要点
- 实例分割是计算机视觉中的重要任务,广泛应用于多个领域。
- Mask-RT-DETR模型基于百度飞桨发布的RT-DETR,适配实例分割任务。
- Mask-RT-DETR在结构上与RT-DETR一致,但在实现细节上进行了改进。
- Mask-RT-DETR在实例分割任务中取得了SOTA精度。
- Mask-RT-DETR采用PP-HGNetV2作为骨干网络,引入MaskFeatFPN模块和IoU-aware Query Selection技术。
- Mask-RT-DETR增加了分割头MaskDINOHead以生成高质量的掩码输出。
- Mask-RT-DETR的benchmark指标达到了SOTA精度。
- PaddleX提供多种开发和部署方式,包括云端和本地开源版。
- PaddleX星河零代码产线允许用户无需代码完成模型开发全流程。
- PaddleX支持低代码开发,简化模型的训练和评估过程。
- PaddleX提供极简的Python API,方便模型的集成。
- PaddleX支持高性能和服务化部署,提升模型预测速度和管理便利性。
- 百度研发工程师将于9月19日进行PaddleX实例分割模型的深度解析课程。
- 星河产业应用创新奖面向多个领域征集前沿方案,提供全方位的生态服务。
🏷️
标签
➡️