本文介绍了一种更数据高效的概率元学习方法,即APOVI-BNN。该方法通过摊销伪观测变分推理贝叶斯神经网络,提高了贝叶斯神经网络的推理质量。同时,APOVI-BNN作为神经过程家族的新成员,在复杂问题上具有更好的预测性能。在一维回归问题和图像完成设置中,APOVI-BNN在训练数据有限的情况下表现最好。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: