贝叶斯神经网络中的摊还推断

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本文介绍了一种更数据高效的概率元学习方法,即APOVI-BNN。该方法通过摊销伪观测变分推理贝叶斯神经网络,提高了贝叶斯神经网络的推理质量。同时,APOVI-BNN作为神经过程家族的新成员,在复杂问题上具有更好的预测性能。在一维回归问题和图像完成设置中,APOVI-BNN在训练数据有限的情况下表现最好。

原文中文,约400字,阅读约需1分钟。
阅读原文