贝叶斯神经网络中的摊还推断
原文中文,约400字,阅读约需1分钟。发表于: 。在本文中,我们提出了一种更数据高效的概率元学习方法,通过对贝叶斯神经网络的推理进行逐数据点摊销,引入了摊销伪观测变分推理贝叶斯神经网络(APOVI-BNN)。我们展示了在我们的摊销方案下获得的近似后验与传统变分推理获得的近似后验在质量上是相似或更好的,尽管摊销推理是在单个前向传递中执行的。然后,我们讨论了如何将 APOVI-BNN...
本文介绍了一种更数据高效的概率元学习方法,即APOVI-BNN。该方法通过摊销伪观测变分推理贝叶斯神经网络,提高了贝叶斯神经网络的推理质量。同时,APOVI-BNN作为神经过程家族的新成员,在复杂问题上具有更好的预测性能。在一维回归问题和图像完成设置中,APOVI-BNN在训练数据有限的情况下表现最好。