FeDEQ是一种先驱性的联邦学习框架,利用深度均衡学习和一致性优化有效地在边缘节点之间利用紧凑的共享数据表示,允许派生个性化模型,并通过采用交替方向法解(ADMM)一致性优化的新型分布式算法,理论上证明了其收敛性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: