神经随机微分方程用于电磁非预期辐射发射的稳健可解释分析

💡 原文中文,约600字,阅读约需2分钟。
📝

内容提要

本文提出了一种利用神经随机微分方程(SDEs)解决ResNet-like模型在意外辐射发射(URE)分类中的局限性的方法。实验证明,神经SDE模型比ResNet模型更具鲁棒性,即使在高斯噪声下也能保持高F1分数。此外,神经SDE模型成功恢复了输入数据中的时不变或周期性水平带,这一特征在ResNet-like模型生成的解释中明显缺失。