预训练语言模型在网络安全研究文献中的概念提取表现低劣
原文中文,约300字,阅读约需1分钟。发表于: 。利用大语言模型(LLMs)从网络安全相关文本中提取相关实体,以识别发展趋势和监测新兴趋势,研究结果表明 LLMs 的知识实体并不完全反映网络安全的上下文,但名词提取器在此领域具有潜力。通过统计分析,开发了一种名词提取器,可从领域中提取特定且相关的复合名词。通过测试模型在 LLM 领域中识别趋势,观察到一些限制,但它能够提供有关新兴趋势演变的有希望的结果。
该研究使用大语言模型(LLMs)从网络安全文本中提取实体,以识别发展趋势和监测新兴趋势。研究发现LLMs的知识实体并不完全反映网络安全的上下文,但名词提取器在此领域具有潜力。通过统计分析,开发了一种名词提取器,可从领域中提取特定且相关的复合名词。测试结果显示该模型在LLM领域中识别趋势存在一些限制,但仍能提供有关新兴趋势演变的有希望的结果。