融合深度变换网络与加权向量关键点投票的鲁棒性 6D 物体姿态估计
原文中文,约300字,阅读约需1分钟。发表于: 。通过提出的全新深度融合转换块 (DFTr),结合了全局增强特征提取和语义相似性建模的算法进行一张 RGBD 图像的 6D 物体姿态估计。此外,还引入了一种新颖的加权矢量投票算法,实现了非迭代的全局优化策略,以精确定位三维关键点,并实现接近实时的推断,实验证明该方法在多个基准测试中优于现有方法。
该文介绍了一种新的算法,通过DFTr结合全局增强特征提取和语义相似性建模,实现了RGBD图像的6D物体姿态估计。同时,引入了一种新颖的加权矢量投票算法,实现了非迭代的全局优化策略,以精确定位三维关键点,并实现接近实时的推断。实验证明该方法在多个基准测试中优于现有方法。