多尺度分解 MLP-Mixer 用于时序分析

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

该文介绍了一种新的CNN模型——PatchMixer,用于解决Transformer模型在时间序列预测任务中的挑战。PatchMixer具有自注意力机制,可以保留时间信息,且仅依赖于深度可分离卷积,可以在单一尺度的结构中提取局部特征和全局相关性。实验结果表明,相对于现有最先进的方法和表现最佳的CNN,PatchMixer的提升分别为3.9%和21.2%,速度是最先进方法的2-3倍。作者将发布代码和模型。

原文中文,约300字,阅读约需1分钟。
阅读原文