可持续计算的光子学

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本文研究了光子加速器上的图像分割,探讨了最适合光子加速器的DNN架构类型,以及在光子加速器上执行不同图像分割模型的吞吐量和能效,并讨论了相关的权衡。研究证明了某些分割模型在光子加速器上执行时几乎不会损失准确性,并探究了其鲁棒性的经验推理,并讨论了对模型表现不佳时如何恢复准确性的技术。此外,还比较了在光子加速器上不同图像分割工作负载的吞吐量和能耗估计,并讨论了提高光子加速器在计算机视觉任务中应用的挑战和潜在优化方法。

原文中文,约300字,阅读约需1分钟。
阅读原文