本研究提出了一种新型的单一类别分类框架OCGEC,使用少量的清洁数据和基于图神经网络的模型级后门检测来检测后门攻击。OCGEC方法在许多任务上的AUC分数超过98%,大大超过现有方法,并且无需大量正负样本。该研究为泛用后门检测提供了新的见解,可用于改进其他后门防御任务。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: