过拟合是模型在训练数据上表现好但在新数据上表现差的问题,原因包括数据量小、不平衡、噪声多、训练时间长或模型复杂。解决方法有增加数据、多样化、减少噪声、提前停止、使用Dropout、集成学习和正则化。欠拟合是模型对所有数据表现差,原因是模型简单、训练时间短或正则化过多。解决方法包括增加模型复杂性、延长训练时间和减少正则化。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: