驱动耗散量子动力学的神经量子传播器

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

量子神经网络的训练动力学可以用广义Lotka-Volterra方程描述,显示出动力学相变。当代价函数目标值超过最小可达值时,动力学从冻结核相位转变为冻结误差相位。在这两个相位中,固定点的收敛是指数级的,而在临界点是多项式级的。通过将训练动力学的Hessian映射到虚时间中的Hamiltonian,揭示出相变为二阶,临界点表现出尺度不变性。这些理论在IBM量子设备上得到验证。

原文中文,约400字,阅读约需1分钟。
阅读原文