WardropNet: 通过平衡增强学习进行交通流预测
本研究提出WardropNet,一种结合经典层和均衡层的神经网络,旨在提高交通流预测效率。通过监督学习,该方法减少了真实交通流与预测结果的差异。在实际和模拟交通中,WardropNet在时间不变预测上提升72%,在时间变化预测上提升23%。
原文中文,约500字,阅读约需2分钟。
本研究提出WardropNet,一种结合经典层和均衡层的神经网络,旨在提高交通流预测效率。通过监督学习,该方法减少了真实交通流与预测结果的差异。在实际和模拟交通中,WardropNet在时间不变预测上提升72%,在时间变化预测上提升23%。