关于深度贝叶斯神经网络后验的局部自适应可扩展扩散采样方法的收敛性
原文中文,约300字,阅读约需1分钟。发表于: 。深度神经网络的鲁棒性不确定性量化是许多深度学习应用的重要需求,贝叶斯神经网络是建模深度神经网络不确定性的一种有前景的方法,但从神经网络的后验分布中生成样本仍然是一个重大挑战。在本文中,我们展示了这些方法在采样分布时可能存在显著偏差,即使在步长趋近于零且批量大小足够大的情况下。
我们提出了使用神经采样器来近似复杂多模态和相关后验分布的隐式分布的方法,并介绍了一种新的采样器架构,通过可微的数值逼近解决计算问题。我们的实证分析表明,我们的方法能够恢复大型贝叶斯神经网络中层间的相关性,通过下游任务的实验,我们证明了我们的表达性后验优于最先进的不确定性量化方法,验证了我们的训练算法的有效性和学习出的隐式逼近的质量。