频域中的持续学习
💡
原文中文,约400字,阅读约需1分钟。
📝
内容提要
研究探讨了动态稀疏训练(DST)在连续学习中的影响。结果显示,低稀疏度下Erdos-Renyi Kernel(ERK)初始化更有效,高稀疏度下均匀初始化更稳健。增长策略的效果取决于初始化和稀疏度。DST的适应性可能提升连续学习效果。
🎯
关键要点
- 连续学习是智能系统从数据流中顺序获取和保留知识的能力。
- 本研究首次实证探讨了动态稀疏训练(DST)在连续学习中的影响。
- 研究填补了连续学习中DST最佳配置的研究空白。
- 在低稀疏度下,Erdos-Renyi Kernel (ERK)初始化更有效。
- 在高稀疏度下,均匀初始化展现出更稳健的性能。
- 增长策略的效果依赖于初始化策略和稀疏度程度。
- DST的适应性可能提升连续学习的效果。
➡️