大规模语言模型对线机恁学习的离维匀整进化
本文研究了大规模语言模型对齐的两种方法:强化学习与人类反馈(RLHF)和基于对比学习的直接偏好优化(DPO)。提出了一种新方法MPO,通过两阶段训练过程减轻了两种方法的缺点。实验结果表明MPO在两个对齐数据集上都有效。
原文中文,约300字,阅读约需1分钟。
本文研究了大规模语言模型对齐的两种方法:强化学习与人类反馈(RLHF)和基于对比学习的直接偏好优化(DPO)。提出了一种新方法MPO,通过两阶段训练过程减轻了两种方法的缺点。实验结果表明MPO在两个对齐数据集上都有效。