通往通用基于深度学习的树实例分割模型
发表于: 。研究了深度学习方法在树木分割中的应用,通过使用七个不同数据集的训练,发现从针叶树为主的稀疏点云到阔叶树为主的高分辨率点云的泛化是可能的,但由高分辨率到低分辨率点云的泛化却具有挑战性,强调了模型开发中需要具备多样性数据特征的森林点云。
研究了深度学习方法在树木分割中的应用,通过使用七个不同数据集的训练,发现从针叶树为主的稀疏点云到阔叶树为主的高分辨率点云的泛化是可能的,但由高分辨率到低分辨率点云的泛化却具有挑战性,强调了模型开发中需要具备多样性数据特征的森林点云。