从生物医学文献中进行意图识别和实体提取
原文中文,约400字,阅读约需1分钟。发表于: 。通过全面的实证评估,我们表明在生物医学文本中,受监督的微调方法仍然相关且比通用性的大型语言模型更有效,如 PubMedBERT 可以仅凭 5 个受监督示例就能在命名实体识别任务上超过 ChatGPT。
本论文提出了一种基于transformer的方法来解决生物医学领域中的NER挑战,包括零样本和少样本NER。实验结果表明,该方法具有识别有限样本中的新实体的能力,对于零样本NER的平均F1得分达到35.44%,对于10样本和100样本NER的平均F1得分分别为69.94%和79.51%。该方法与目前的先进方法相媲美甚至更好。