重新审视证据深度学习的基本与非基本设置
本研究在证据深度学习中提出了Re-EDL变种,通过将先验权重作为可调超参数,优化Dirichlet分布的期望,避免过度自信,提高预测性能。实验结果表明,该方法在不确定性估计方面表现优异。
原文中文,约200字,阅读约需1分钟。
本研究在证据深度学习中提出了Re-EDL变种,通过将先验权重作为可调超参数,优化Dirichlet分布的期望,避免过度自信,提高预测性能。实验结果表明,该方法在不确定性估计方面表现优异。